

Application Note

3G SDI Interfaces

Revision 1.0 May 2015

Contents

1	OVERVIEW	3
2	PAYLOAD ID (VPID)	3
3	LEVEL A DIRECT MAPPING	4
4	LEVEL B DUAL-LINK MAPPING	5
5	LEVEL B DUAL-STREAM MAPPING	6

1 Overview

When we talk about 3G-SDI we have to be more precise in order to avoid misunderstandings. E.g. when sending a 1080p50 signal from one device to another, it is not ensured that the transmission will be successful, although both devices can handle 3G-SDI signals.

The reason for this is the option of different mapping schemes for transporting video signals over the serial digital interface.

In this Application Note the three SMPTE ST 425-1mapping schemes **Level A**, **Level B Dual-Link**, and **Level B Dual-Stream** of *fast progressive formats* (YCbCr 4:2:2 10Bit 60p 59p 50p) will be discussed.

2 Payload ID (VPID)

Because of the numerous video formats a (physical) 3G serial digital interface can carry, the use of a Payload Identifier is <u>mandatory</u>. Without a VPID the receiving device is not able to correctly decode the incoming signal.

SMPTE ST 352 *"Payload Identification Codes for Serial Digital Interfaces"* describes this 4-byte identifier.

SDI-Analyzers, supporting 3G SDI, also need a VPID to correctly decode the signals. It is displayed for example in the "Video Session" display of Tektronix WFMs (see Figure 2, Figure 4, and Figure 6).

3 Level A Direct Mapping

Figure 1 shows the transmission of a 1080p50 signal over 3G serial interface using 3G Level A Direct Mapping.

Figure 1 – Direct Mapping

This mapping is well known as it is the same as already used for 1.485 Gb/s HD-SDI.

Chrominance- and luminance-pixels are transmitted alternately. As it is a 4:2:2 format, even luminance pixels are accompanied by chrominance pixels, odd luminance pixels are transmitted solely.

Figure 2 shows a screenshot of the upper half of WFM's Video Session with a VPID for Level A Direct Mapping.

Video Session						
Input: SDI h	nput 2A – 3Ga	Signal: Locked				
Effective: Auto	1080p 50 – YCbCr 422	10b - 425M-A 2.970 Gbps				
Selected: Auto	Format Auto Structu	re – Auto Transport				
352M Payload:	89h C9h 00h 01h					
SAV Place Err:	OK	Y Stuck Bits:				
Field Length Err:	OK	C Stuck Bits:				
Line Length Err:	OK	AP CRC:	6E85h	BF5Dh		
Line Number Err:	OK	OK CRC Changed since reset:				
Ancillary Data:	Y and C Present					

Figure 2 – VPID Level A Direct Mapping

4 Level B Dual-Link Mapping

Figure 3 shows the transmission of a 1080p50 signal over a 3G serial interface using 3G Level B Dual-Link Mapping.

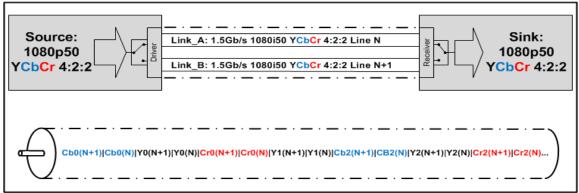


Figure 3 – Dual-Link Mapping

For this mapping, luminance and chrominance is multiplexed inside each link alternately in the usual 4:2:2 10 bit scheme. Succeeding lines (N, N+1) will be mapped between Link_A and Link_B as well.

Even though the original image is progressively scanned, it is split line by line between the two links according to SMPTE ST 372.

Two succeeding 1080p frames are packed into the two fields of the 1080i transport format.

Link_A and Link_B exist only virtually. They are multiplexed into one data-stream and transmitted over one single cable as shown in the lower part of Figure 3.

Figure 4 shows a screenshot of the upper half of WFM's Video Session with a VPID for Level B Dual-Link Mapping.

Video Session							
Input: SDI Input	2A – 3Gb	Signal: Locked					
Effective: Auto 108	0p 50 – YCbCr 422 10b	– 425M–B 2.970 Gbps					
Selected: Auto Format – Auto Structure – Auto Transport							
352M Payload:	Link A: 8Ah 49h 00h	01h Link B: 8Ah 49h 00h	4lh				
SAV Place Err:	OK	Link A: Y Stuck Bits:					
Field Length Err:	OK	Link A: C Stuck Bits:					
Line Length Err:	OK	Link B: Y Stuck Bits:					
Line Number Err:	OK	Link B: C Stuck Bits:					
Ancillary Data:	Y and C Present	Link A: AP CRC:	6E85h	BF5Dh			
		Link B: AP CRC:	ACDBh	5EE8h			
		CRC Changed since res	set:	No			

Figure 4 – VPID Level B Dual-Link Mapping

Both links contain VPIDs that differ in the last byte to identify Link_A and Link_B of the Dual-Link signal.

5 Level B Dual-Stream Mapping

Figure 5 shows the transmission of **two independent** 1080p24 signals over a 3G serial interface using 3G Level B Dual-Stream Mapping.

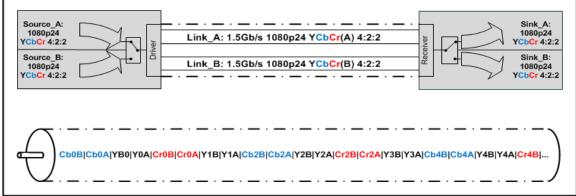


Figure 5 – Dual-Stream Mapping

This mapping scheme is typically used for the transmission of stereoscopic signals. In this application, Source_A represents the left-eye signal and Source_B is the right-eye signal of the 3D-image.

Again, luminance and chrominance is multiplexed inside each link alternately in the usual 4:2:2 10 bit scheme. Link_A carries Source_A pixels and Link_B carries Source_B pixels respectively.

Link_A and Link_B exist only virtually. They are multiplexed into one data-stream and transmitted over one single cable as shown in the lower part of Figure 5.

	Video Session							
Input:	SDI Input 2.	4 - 3Gb		Signal:	Locked			
Effective:	Auto 1080p	24 – HD) SDI 422 – 425M	-B 2.970 C	Gbps			
Selected:	Selected: Auto Format – Auto Structure – Auto Transport							
352M Payload:	4	5trm 1: 80	Ch C3h 00h 01h	Strm 2:	8Ch C3h (00h 01h		
SAV Place Err:	()K		Stream 1	: Y Stuck	Bits:		
Field Length Er	rr: ()K		Stream 1	C Stuck	Bits:		
Line Length Er	r: ()K		Stream 2	2: Y Stuck	Bits:		
Line Number E	rr: ()K		Stream 2	2: C Stuck	Bits:		
Ancillary Data	u .	(and C l	Present	Stream 1	I: AP CRC:		6E85h	BF5Dh
				Stream 2	2: AP CRC		FACCh	0B13h
				CRC Cha	anged sin	ce reset:		No

Figure 6 shows a screenshot of the upper half of WFM's Video Session with a VPID for Level B Dual-Stream Mapping.

Figure 6 – VPID Level B Dual-Stream Mapping

Both links contain identical VPIDs therefore Link_A (Stream 1) and Link_B (Stream 2) are identified only through their position in the multiplexed data-stream.